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ABSTRACT 

 

In this study, fracture properties of Ultra-High Performance Concrete (UHPC), 

and High Performance Concrete (HPC) are presented. The average compressive 

strengths of UHPC and HPC used in the tests were 141 MPa, and 55 MPa 

respectively. Formulation and processing of the mixes and test specimens are 

also presented. Size effect and the influence of compressive strength of concrete 

on fracture parameters were investigated using test methods recommended by 

ACI Committee 446. 

The Fracture properties investigated included crack opening displacement 

(COD), fracture energy GF, fracture toughness KIC, and bilinear approximation of 

the softening curve, for two different sizes of UHPC and HPC.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 
 

The subject of Fracture mechanics encompasses crack initiation and 

propagation. Many structures fail due to cracks, and it is essential to realize the 

significance of the fracture in the real life to avoid catastrophic failures. It has 

been observed that neither linear elastic fracture mechanics (LEFM) nor elastic 

plastic fracture mechanics (EPFM) can be applied to concrete. The complexity 

arises from the fact that, different toughening mechanisms exist in the fracture 

process zone (FPZ) of concrete to consume energy. This led to use of quasi-

brittle fracture mechanic (QBFM) to characterize the fracture parameters of 

concrete. The cohesive pressure which tends to close the crack is assumed to 

model the toughening mechanisms in the FPZ by QBFM. As a result, the 

factitious crack approach was proposed by Hillerborg et al. for fracture of 

concrete [1], which was the basis for test methods proposed by RILEM. Later 

investigation revealed that the fracture parameters obtained were size 

dependent. In order solve this size dependency of fracture properties; ACI 

Committee 446 proposed new test methods which does not have any size effect.  

The ultra-high performance concrete is known for high compressive strength 

which results in poor fracture toughness. The brittle fracture of UHPC makes the 
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use of ultra-high performance fiber reinforced concrete (UHPFRC) very popular. 

Poor fracture properties of UHPC has inspired research to characterize its 

fracture parameters, including the wedge splitting test [2]. 

The lack of research on fracture mechanics of UHPC based on the new ACI test 

method led to this study where the fracture parameters of UHPC for two sizes 

were determined. Also, the influence of compressive strength on the fracture 

properties and size-effect of concrete were investigated using High Performance 

Concrete (HPC). 

 

1.2 Objectives 
 

The primary objectives in this study were: 

 

 To determine the fracture properties of ultra-high performance concrete 

with no fibers using the new test method proposed by ACI Committee 446. 

 To investigate the size effect of the proposed test method on the fracture 

properties of both UHPC and HPC for two different sizes. 

 To investigate the influence of compressive strength of concrete on the 

fracture properties of concrete for two different sizes. 
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1.3 Outline of Thesis 
 

Chapter 2 provides a literature review of UHPC, HPC, fracture mechanics of 

concrete, and the conventional test methods as well as the new test method 

proposed by ACI Committee 446. Chapter 3 describes how UHPC and HPC 

were cast as well as the composition of the mix design. It also represents the 

provisions determined by ACI Committee 446 on how to conduct the Notched 

Beam Level 2 test. The results and the discussions are mentioned in chapter 4. 

Eventually, chapter 5 shows the conclusions for this study. 
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CHAPTER 2 

2 LITERATURE REVIEW 

 

2.1 Ultra High Performance Concrete (UHPC) 

 

Concrete can be classified based on its compressive strength as below [3]: 

 Conventional concrete up to C53/65.  

 High Performance Concrete C53/65 to C90/105.  

 Ultra High Performance Concrete C90/105 to C200/230.  

One of the major breakthroughs in concrete technology in the last two decades is 

the development of ultra-high-performance concrete with high compressive 

strength, also known as Reactive Powder Concrete, which also enhanced the 

durability in comparison with HPC.  

Sustainable lightweight concrete constructions are now made possible by using 

sufficient amount of steel fibers in UHPC. 

 

2.1.1 UHPC Advantages and Disadvantages 

Advantages 

 

 The very dense material structure results in high durability and smaller 

concrete cover.  
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 The stress loss in pre-stressing steel is less due to less shrinkage.  

 More slender structures are possible which reduces the weight.   

 Higher pre-stressing is possible.  

 It is possible to construct without steel reinforcement.  

 

Disadvantages  

 

 UHPC is more expensive than conventional concrete.  

 UHPC with steel fibers cannot be recycled as the steel fibers can hardly 

be taken out.  

 The hydration process within UHPC is fast which results in a large heat 

production. This results in a fast hardening shrinkage during the first days. 

Variable temperatures during hardening within the concrete result in 

internal stresses causing cracks, particularly important for thick 

construction elements.   

 The production capacity of a concrete mixing plant decreases for the 

production of UHPC as The mixing takes longer and is more complicated. 

 There is a lack of sufficient knowledge about fatigue of the material.  
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2.1.2 History of Development and Applications of Ultra High Performance 

Concrete 

 

In the 1960s, under specific laboratory conditions, concretes with compressive 

strength of up to 800 N/mm2 were produced. They were cured thermally and 

compacted under high pressure. Later, in the early 1980s the idea of using 

concrete with fine aggregate, and dense, and homogenous cements matrix to 

avoid micro cracks in structures, was developed. Ultra High Performance 

Concrete is also known as Reactive Powder Concrete (PRC). This is because of 

the restriction in grain size which limits the size to be less than 1 mm, and also, 

due to high packing density caused by the addition of various reactive or inert 

minerals [4].  

It was only after 1980, that UHPC was used commercially for the first time for the 

development of so called D.S.P. mortars in Denmark [5], which was primarily 

used for special applications in the security industry – like vaults, strong rooms 

and protective defense constructions. 

Greater application of UHPC began around 1985, including heavily reinforced 

UHPC precast elements for the rehabilitation of deteriorated concrete bridges 

and industrial floors [5], ductile fiber reinforced fine grained “Reactive Powder 

Concrete” (RPC), such as “Ductal” produced by Lafarge in France or Densit 

produced in Denmark [6]. Besides, coarse grained UHPC with natural or artificial 

high strength aggregates were developed, which might be used for highly loaded 

columns such as in extremely high-rise buildings [7] . Nowadays a large range of 
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right time. This however results in a longer mixing time. The UHPC composition 

is very sensitive to little variations in the amount of materials and is also 

influenced by the weather conditions. Considering all this it is assumed best to 

utilize precast UHPC elements instead of in-situ UHPC as this ensures a better 

quality. However, the utilization of in-situ UHPC is not impossible. Special 

attention should be paid to the curing of the UHPC because of its very low or 

even total absence of bleeding. The outer skin and construction joints should be 

checked and cured to prevent drying out of the concrete causing micro cracks. 

However, in order to get a proper mix design for UHPC, it’s essential to make the 

following changes to normal concrete mix design: 

 Increasing the package density, by filling the voids with fine particles which 

can contribute to the strength as well as brittleness.  

 Adding steel fibers; this leads to small crack distances and gives the material 

large ductility. Reducing the water-cement ratio which increases the material 

strength. 

 Improving the homogeneity, by using small sized particles to decrease the 

stress variation. This also reduces the transverse tensile stresses. A more 

homogeneous material results in a more homogeneous stress distribution and 

thus in a generally stronger material.  

 Improving the microstructure by hardening the concrete at higher 

temperatures and/or by hardening at higher pressures. 
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2.2 High Performance Concrete (HPC) 

 

Although the main focus of this paper is to determine the fracture parameters for 

UHPC, High Performance Concrete (HPC) was cast in two different sizes as well 

to study the size effect, and fracture parameters for two different concrete with 

different compressive strengths. 

 

2.2.1 Background 

 

ACI defined High-Performance Concrete (HPC) as a concrete meeting special 

combinations of performance and uniformity requirements that cannot always be 

achieved routinely using conventional constituents and normal mixing, placing, 

and curing practice. [10] The primary applications of High-performance concrete 

have been in tunnels, bridges, and tall buildings for its strength, durability, and 

high modulus of elasticity. Moreover, HPC has been used in shotcrete repair, 

poles, parking garages, and agricultural applications. 

 

2.3 Fracture Mechanics 

 

There are basically two reasons which generally cause failure in structures: 

1- “Negligence during design, construction, or operation of structure.” 
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2-  “Application of a new design or material, which produces an unexpected 

results” [11]. 

 

2.3.1 Historical Perspective 

 

In 1892, early elasticity analysis by Love showed the necessity of understanding 

crack propagation. Later, in 1920, Griffith made a connection between fracture 

stress and flaw size [12]. Work done by Irwin and Orowan revealed the limitation 

of Griffith approach for metals, which led them to suggest the energy release rate 

as fracture criteria [13], [14]. 

In 1960, the fundamentals of linear elastic fracture mechanics (LEFM) were fairly 

well established. Later, Wells suggested the displacement of crack faces as an 

alternative criterion when significant plasticity precedes failure [15]. In 1968, Rice 

proposed the J-integral as another fracture criterion to better characterize 

nonlinear behavior of material ahead of the crack by assuming plastic 

deformation to be nonlinear elastic [16]. 

 

2.3.2  Fracture Mechanics of Concrete 

 

The stress-strain curve is always linearly elastic up to the maximum stress for an 

ideally brittle material. For a quasi-brittle material like concrete there is significant 

non-linearity before the maximum stress. Strain softening can be observed under 
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stable propagation of the crack. If a closed loop displacement controlled test 

machine is used, both opening of the crack and unloading of the specimen can 

be observed for post peak part of the stress-strain curve [17]. 

Fracture mechanics assumes that an initial crack starts propagating at the 

proportional limit fy, and keeps propagating in a stable manner until the peak 

stress, so new crack surfaces are formed by extension of cracks. It is well 

established that two fracture criteria govern cracking of concrete [18], [19]: 

 Energy criteria: Crack extension requires energy release. 

 Stress criteria: crack extension needs stress to overcome the cohesive 

strength of material. 

Although these two criteria can explain the fracture behavior of concrete, the 

complexity is how to determine what is exactly consuming the energy. 

The difference between brittle and ductile material in fracture behavior originates 

from shape and dimension of the fracture process zone (FPZ), which is a volume 

of material that is engaged in the formation of new surfaces. 

The difficulties in applying fracture mechanics to a quasi-brittle materials like 

concrete arise from the various toughening mechanism in the FPZ of these 

materials such as crack bridging, crack branching, crack deflection, crack face 

friction, crack tip blunting, and micro cracking [17], [20], [21]. 

Although Glucklich et al. tried to use liner elastic fracture mechanics (LEFM) for 

concrete [22], the large FPZ limits the application of LEFM. This was shown by 
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Moavenzadeh and Kuguel in 1969, who observed large differences between 

theoretical and experimental results [23]. 

Due to limitation of LEFM, researchers investigated the applicability of elastic-

plastic fracture mechanics (EPFM) to concrete. However, most of research was 

aimed at fiber reinforced concrete (FRC) which has significant non-linearity [24]. 

Two main parameters of fracture for EPFM are the crack tip opening 

displacement (CTOD) and the J-integral. Kumar proposed that CTOD is a 

suitable fracture parameter to characterize the non-linear behavior within the FPZ 

of concrete, which can be evaluated by measuring the crack mouth opening 

displacement, assuming a linear crack profile [25]. 

The J-integral for a non-linear elastic material is defined as the energy available 

for crack extension; the line integral is used to calculate the J-integral [16]. 

In 1973, Rice et al. suggested a method to determine JIC for metals using two 

notched un-notched specimens under pure bending [26].  

Later Mindess et al. applied this method in evaluating JIC of fiber reinforced 

composites using a four point bending test setup [27].  

The cohesive pressure is assumed by quasi-brittle fracture mechanics (QBFM) to 

be acting on the crack surfaces to model different toughening mechanisms in the 

FPZ, as a modified version of the plastic zone model based on the Dugdale and 

Barenblatt assumptions [28], [29]. 
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The cohesive pressure σ(w) which tends to close the crack decreases as the 

crack opening displacement (COD) increases. Based on the cohesive crack 

model, the energy release rate can be divided into two parts: the energy 

consumed in separating two surfaces GIC , and the energy consumed to 

overcome the cohesive pressure σ(w). 

ࡳ  ൌ ࡵࡳ   ࢝ࢊሻ࢝ሺ࣌
ࡰࡻࢀ
                                                                                     2.1 

 

The first term in the above equation is basically the Griffith LEFM energy 

balance, while the second term shows the Dugdale-barenblatt correction for 

plastic materials. Also the shape of the cohesive pressure is a distinction 

between a quasi-material and plastic material. This model leads to two different 

approaches in modeling the fracture mechanics of concrete: 

 

2.3.3 The Fictitious Crack Approach 

 

Hillerborg et al. suggested a fictitious crack model for fracture of concrete [1].  

If the pre peak tensile response of concrete is ignored, one can consider only the 

post-peak fracture behavior or softening as below: 
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One of the most famous model based on the above discussed principles is two 

parameter fracture model by Jenq and Shah [31] , which includes the critical 

crack tip opening displacement (CTODc) , and the stress intensity factor KIC as 

the two fracture criteria.  

 

2.3.5 Fracture Mechanics of Ultra High Performance Concrete 

 

Concrete becomes more brittle as its compressive strength increases. Thus, 

UHPC is a brittle material due to high compressive strength, which leads to low 

fracture energy. That is why usually fibers are used in UHPC to enhance its 

fracture behavior [32].  

It was observed that flexural tensile strength increases linearly with increase of 

fiber volume. Also, the inverse analysis method for determination of a tensile 

fracture model of UHPFRC was applied and a tri-linear softening curve is 

suggested based on the primitive curve. 

In another paper, the authors investigated the replacement of micro steel fibers 

steel fibers, and the consequent effects on the fracture behavior of UHPFRC. 

The two parameter fracture mechanics was used to determine the fracture 

behavior. The results revealed that only by using undulated or end-hooked steel 

fibers of 30 or 40 mm in length, the fracture toughness will be similar to that of 

micro steel fibers [33]. 
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In 2003, a study was executed on fracture toughness of ultra-high strength 

concrete with axial compressive strength of more than 140 MPa. The mix used 

was similar to the UHPC mix design in this paper, and the mechanical properties 

mentioned was very close to UHPC. The common fracture parameters such as 

fracture energy, fracture toughness, characteristic length, and crack opening 

displacement (COD) were evaluated using the wedge split testing, for two 

different sizes of aggregates. The authors concluded that, the coarser aggregate 

enhanced the fracture behavior of UHPC, since UHPC without coarse aggregate, 

while exhibiting high compressive strength is very brittle [2]. 

 

2.4 Experimental Procedures to Calculate Fracture Properties of 

Concrete 

 

2.4.1 Background 

 

Due to the presence of a large fracture process zone in concrete, conventional 

methods based on LEFM cannot be applied directly to measure fracture 

parameters. RILEM committee has recommended three drafts to compute 

fracture parameters of concrete [34], which are very briefly discussed here; they 

are based on the fictitious crack model by Hillerborg et al. [1], the two parameter 

fracture model by Jenq, and Shah [31], and the size effect model by Bazant et al. 

[35]. 
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Pa: Load applied by the machine 

Pw: Self weight 

Wo: Area below the measured Pa-δ curve 

W1=Pw* δo=W2 

Thus, the fracture energy will be:  

ࡲࡳ ൌ
࢚ࢃ

ሺࢇି࢈ሻ࢚
  ൌ

઼࢝ࡼାࢃ
ሺࢇି࢈ሻ࢚

                                                                                 2.5 

     

Discussion and Conclusion  

This method is size independent, and no counterweights are used in the test 

setup which affects the stability of test. Moreover, the fictitious crack model is 

based on three fracture parameters, so if only a single parameter is obtained, 

erroneous conclusion can be made. This is illustrated in the figure below, where 

the value of GF is plotted as a function of compressive strength. It indicated that 

the fracture toughness increases as the material compressive strength increases, 

which can be shown to be wrong based on the brittleness index which combines 

the three fracture parameters [17]. 
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2. Self-weight: Compensation for self-weight during specimen handling for 

large-size specimen. The self-weight of the beam may already preload 

and damage the beam before loading. 

In the aforementioned method, the effects of self-weight and machine stability 

were not addressed, since the specimens are relatively small. 

3. CTODc Calculations: 

In this model CTODୡ  is based on the elastic compliance at the peak load, 

While: 

 CTODୡ =CTODୡୣ  CTODୡ
୮ 

Where, CTODୡୣ is the elastic component of CTODc, and CTODୡ
୮ is the plastic 

component of CTODc. 

The unloading procedure is used, so that CTODୡ
୮ can be subtracted 

from CTOD୲ ܦܱܶܥ .
 has a greater portion in ܦܱܶܥ௧  for small-size specimen 

because the fracture process zone is larger compared to specimen size. 

 

2.4.4 RILEM Method of Bazant GF and cf 

 

The RILEM Technical Committee 89-FMT on fracture mechanics of concrete-

Test Methods recommended the three-point bend beam to evaluate GF, based 

on the size effect model by Bazant et al. [35]. 



www.manaraa.com

 

S

s

r

 

T

f

D

Specimens

should be 

reached in

This metho

fracture pro

Discussion

 Gf o

spec

 Gf is

spec

s of at leas

loaded at a

 5 minutes

Fig

od provides

ocess zone

n and Conc

obtained co

cimen, thu

s obtained 

cimen by s

st three diff

a constant 

s. Other de

gure  2.9: T

s the value

e, cf. 

clusion  

orresponds

s it is indep

from an ex

statistical re

25

ferent sizes

displacem

tails are illu

The three-p

es for fractu

s to fracture

pendent of

xtrapolation

egression.

5 

s are neede

ment rate, s

ustrated in 

point bend

ure energy

e energy d

f specimen

n of the pe

ed, and the

o the maxi

the figure 

d beam [17

, Gf, and th

issipated in

n size.  

eak loads o

e specimen

mum load 

below: 

7] 

he length o

n an infinite

of finite-size

ns 

is 

 

of the 

ely large 

e 



www.manaraa.com

26 
 

2.4.5 Summary and Comparison of the Three Methods 

 

The differences and similarities between three different test methods can be 

summarized into: 

 Gf is based on the size effect model. 

 GIୡ
ୱ  is obtained indirectly from KIୡ

ୱ  and E as GIୡ
ୱ = ሺKIୡ

ୱ )2/E.  

 GIୡ
ୱ , and Gf are both based on effective-elastic crack approach. 

 GF is based on the fictitious crack model, and its roughly twice as great 

as GIୡ
ୱ , and Gf, Because GF is based on global load and the LPD curve. 

 In calculating GF, true surface separation energy is considered as well as 

spurious energy and energy dissipated outside of the fracture process 

zone. In addition, the energy required to form the fracture process zone is 

also included. 

  GF is averaged by the whole ligament area at the crack front which 

includes both areas inside and outside of the fracture process zone. But 

the other two methods represent the energy dissipated on a unit crack 

area in the fracture process zone. 
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2.5 ACI Committee 446: Fracture Toughness Testing of Concrete 

 

2.5.1 Introduction 

 

 After consideration of the many proposed test methods, ACI Committee 446, 

“Fracture Mechanics” suggested two laboratory tests for characterizing the 

fracture behavior of concrete. Both of the proposed fracture tests use identical 

geometry and loading: a notched beam loaded in three-point bending. These two 

proposed tests are the most suitable candidates as possible ASTM standard 

tests [37]. 

The first test, is a Level I test (requiring only measurement of peak loads), 

whereas the second, is a Level II test, requiring a closed-loop testing machine. 

The Level I test may be used, for example, to determine the initial portion of a 

stress-crack opening displacement curve. It can also be used to determine the 

parameters of different size effect models. The second test is a Level II test, 

capable of determining an estimation of the entire stress-crack opening versus 

displacement curve. It can also be used to determine the parameters of the two-

parameter fracture model. 

The laboratory tests described here purposefully contain no theoretical 

interpretation. The parameters of several different fracture models can be 

evaluated from the results of the two tests. The precision and bias of these 

fracture toughness tests are not still determined.  
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Test method used in this paper to determine fracture mechanics behavior is the 

Level II (Closed Loop) Notched Beam Test. This method follows the original work 

by Guinea [38]. 

Later, various equations will be used to determine the fracture parameters. 

Therefore it is essential to understand how and on what basis these equations 

are derived. To obtain a brief insight to the theory behind the equations, the 

forgoing discussion is provided which basically revolves around the principals of 

cohesive crack model. 

 

2.5.2 Background 

 

The complete softening curve is essential to characterize the cohesive crack 

model. It is observed that, while the direct tension test is the best way to get this 

softening curve, but the difficulties in performing the test limited the further use of 

this method. Therefore, different methods were proposed to replace the direct 

tension test, the very first method was proposed by RILEM based on cohesive 

crack model, which used the work of fracture to calculate fracture parameters 

[34]. The results from the tests revealed the size dependency of fracture 

parameters, which could be due to either flaw in experimental method or 

limitation of model or both. 

Planas and his coworkers investigated the test procedure and analysis, and 

came into conclusion that enhancement of experimental method can decrease 
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the size effect on GF. They also believed that, the remaining size effect is due to 

rough formulation of the cohesive crack model. Hence, the suggested method is 

actually an approximate method to calculate the fracture energy based on 

approximate model. This is analogous to determination of Young’s modulus of 

concrete. Concrete is not a linear elastic material. 

The value of GF provides a good evaluation of concrete toughness, but this value 

alone does not provide enough information for analyzing structures. GF can be 

more helpful if it is combined with other information about the softening curve 

such as the tensile strength ft. However, this is still not sufficient to obtain good 

prediction about structure unless the shape of the softening curve is also 

determined which again emphasizes the significance of cohesive crack model by 

Hillerborg. 

 

2.5.3 Determination of the Initial Part of the Softening Curve 

 

The initial portion of the softening curve which, for concrete, can usually be 

estimated by a straight line totally controls the peak load of not too large 

specimens. Guinea, Planas and Elices used that [38] for determining the initial 

slope of the softening curve from the determination of the peak load, as follows 

[39]: 

The following geometry was considered: a three-point bend beam with a span-to-

depth ratio of 4, and an initial notch-to-depth ratio, α0 equal to 0.5. Furthermore, it 
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is assumed that a bending test is used and only the peak load PU is measured 

(The necessary correction was accounted for compensation of specimen self-

weight), After some mathematical manipulation (For more details see [39]). l1, 

and w1 are determined as below: 

݈ଵ ൌ



ሺ0.15755 െ 0.25677Δα െ 0.22136Δα2ሻ                                                     2.6 

ଵݓ ൌ
ଶ

ᇲభ
ா

                                                                                                         2.7 

It should be noted that, the above equation for l1 holds if the beam span to depth 

ratio is four, while the test setup for ACI Committee 446 is based on the beam 

span to depth ratio of 3. 

 

2.5.4 Determination of Fracture Energy, GF 

 

Hillerborg and the RILEM Committee 50 recommended the simplest methods of 

determining the fracture energy for concrete [1], [34], by work-of-fracture. See 

Section  2.4.2. 

The fracture energy based on the cohesive crack model recommendation is 

defined as the energy required for producing a unit area of crack (fully 

broken).Thus, if the specimen is broken statically, and the related work of 

fracture WF is measured, then the approximate fracture energy can be formulated 

as below: 
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                                                                                     2.8 

 

Although at the first glance, the above equation may seem overly simplistic, in 

fact, the application of concept makes it really complicated. For instance, a stable 

machine is needed to measure the static work of fracture, and also ensuring that 

the energy in consumed in the fracture process zone rather than elsewhere (For 

more specific details see  3.3). 

One of the main issues in determining the work of fracture is the self-weight 

compensation. If the test setup is uncompensated, the work of fracture (W0) can 

be calculated as the shaded area in Figure  2.10 which is basically what is 

recorded during the test. This calculated area is in fact significantly smaller than 

the total work of fracture which is the area A’AMBTB’A”A’. Hence area 

A’ABTB’A”A’ must be added to W0. Area A’AMBTB’A”A’ can be subdivided into 

two smaller areas: the area A’ABB’A”A’ which is equal to P0u0, where u0 is the 

recorded load-point, and minus small triangle A’AA”, and the area B’BTB’, which 

was proven by Petersson to be equal to P0u0 as well [40].  
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Where u’B= uB-uA’=uB-uA (note that the points A and A’ lie on the elastic line, and 

so uA- uA’<<uB) It is essential to realize that, P’B, is not known well, and should be 

estimated. 

Petersson proposed that the load-displacement curve, behaves asymptotically 

with u-2: 

ܲ െ ܲ
ᇱ ൌ 

ሺ௨ି௨ಲሻమ
                                                                                         2.12 

Where A is a constant (N-mm2), P and u are the recorded data from test, and uA 

can be determined by interpolation. Then, if the duration of test was long enough, 

this equation can be applied to the last part of the curve, to calculate P’0 and A 

using a least-square fit to the data [39]. 

The curve can be modified to be precisely satisfied by the last point B, since in 

fact, P’0 is not an essential parameter. So it can be rewritten as 

 PB-P’0=P’B=A/ (uB-uA) 2, which leads to 

ܲ െ ܲ ൌ ሺܣ ଵ

ሺ௨ି௨ಲሻమ
െ ଵ

ሺ௨ಳି௨ಲሻమ
ሻ                                                            2.13 

Therefore, if P-PB versus (u-uA)-2-(uB-uA)-2 is plotted, the value for A can be 

evaluated by fitting a quadratic equation or line. 

Once A has been determined, the total work of fracture can be calculated as 

below: 
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ிܹ ൌ ܹ  2 

௨ಳି௨ಲ
                                                                                 2.14 

 

2.5.5 Determination of a Bilinear Softening Curve 

 

The bilinear curve which describes the softening behavior of concrete can be 

approximated by using data from the cylinder splitting test, and stable fracture 

test [38]. Brazilian test can provide good approximation of f’t, and the values for 

w1 and GF can be determined from the peak load of the stable facture test and 

the area under the softening curve respectively. Also, a relationship between 

constant A and the abscissa of the center of gravity, wG can be established. As a 

result of determining all the four aforementioned parameters, the complete 

bilinear softening curve can be plotted.  

The purpose of the following equations is to find a relationship between the tail 

constant A and the center of gravity of the softening curve. Petersson’s rigid-

body estimation of the kinematics of the beam at the stages close to the failure is 

sketched in Figure  2.14. The two halves of the beam are assumed to be rigid and 

connected together by a cohesive zone, so that the crack opening is calculated 

by: 

ω=2θx                                                                                                                2.15 
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the softening curve. This also corresponds to, the abscissa wG( ഥܹ ) of the center 

of gravity of the area defined by the curve and the axes, multiply by this area, 

which is also the same as GF. Also, θ can be written as u/(s/2), which finally 

leads to the equation below: 

ܲ ൌ ௦

ସ௨మ
ிܩ  ீܹ                                                                                               2.18 

Now, if P0= 0 and uA= 0 due to perfect weight compensation, based on equations 

2.12 and 2.18, the value for the center of gravity of the softening curve can be 

calculated as below:  

ீܹ ൌ
ସ

௦ீಷ
                                                                                                      2.19 

Now, it is an easy geometrical problem to totally plot the bilinear softening curve 

by having f’t, w1, GF, and wG. So, first the non-dimensional parameters, specified 

by hats, are defined as below: 

ොߪ ൌ ఙ


ᇲ ෝݓ                    ൌ ௪

௪
                                                                        2.20 

Then, the quadratic equation below should be solved to calculate ݓෝ: 

ෝଶݓ െ ෝݓ2
ଷ௪ෝಸି௪ෝభ
ଶି௪ෝభ

 ෝଵݓ2
ଷ௪ෝಸିଶ

ଶି௪ෝభ
ൌ 0                                                     2.21 

The coordinated of kink point are defined as: 

ෝݓ ൌ ෝଵݓ
௪ෝିଶ

௪ෝି௪ෝభ
ොߪ                   ൌ ଶି௪ෝభ

௪ෝି௪ෝభ
                                                     2.22 
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CHAPTER 3 

3 EXPERIMENTAL METHODS  

 

3.1 Test Mix Design for Ultra High Performance Concrete 

 

Currently, there is no international code for constructing UHPC, thus different 

methods can be used to get proper mix designs with desirable properties. In this 

paper, the mix design used is based on the work done by Dr. Taha on UHPC at 

the University of New Mexico [41], and also the report from Federal Highway 

Administration which characterizes the material behavior of UHPC [42]. The 

largest granular particle is Calcined Bauxite with average diameter of 3 to 7 mm, 

the second largest particle is Cement with roughly 15µm average diameter. Silica 

Fume is the smallest particle with the diameter small enough to fill the voids 

between cement and calcined bauxite. The materials used in 1 cubic meter are 

shown below: 

Table  3.1: Typical UHPC composition 

 

 

 

 

Material  

Type I/II Cement (kg) 992.3 

Silica Fume (kg) 198.5 

Calcined Bauxite Fine Aggregate (kg) 1123 

Water (L) 223 

Glenium 3030 NS (mL) 24800 

Rheomac VMA 362 (mL) 5700 
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This mix can be divided into two parts- solids, and liquids. The solid consists of 

all the cementitious, aggregate, and filler material. The liquids that were mixed 

with solid included viscosity modifying admixture (VMA) and a high-range water 

reducing admixture (HRWA). The viscosity modifying admixture used in this 

study was Rheomac VMA 362, which increases resistance to segregation and 

facilitates placement and consolidation, and the Glenium 3030NS as HRWA. 

Glenium 3030NS reduces water content for a given slump, dosage flexibility for 

normal, mid and high-range water reduction, produces cohesive and non-

segregating concrete mixture, increases compressive and flexural strength at all 

ages, provides faster setting times and strength development, and enhances 

finishability and pumpability. 

First, all the cement, calcined bauxite, and silica fume were added in the shear 

mixer and mixed for 2 minutes. Then, half of the water, half of the Glenium, and 

all of the Rheomac VMA were added. After a wait of 3-5 minutes, the rest of 

water and Glenium were added to the mix until the mix turned into UHPC with 

good workability.  

 

3.1.1 Batching, and Curing of UHPC 

 

Due to limited capacity of the mixer, and the large volume of UHPC needed, 

concrete was cast in 3 different batches. The same mix design was used for all 3 
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The tables below show the summary of different batches and related test results. 

Table  3.2: Number of specimens for two different sizes and cylinders 

  

 

Table  3.3: Test results for the compressive strength of specimens 

B1‐28 days  Average(Psi) Average(MPa) 

Fc (Psi)  21210  20788  21800  21266.00  141.77 

B2‐28 days  Average(Psi) Average(MPa) 

Fc (Psi)  21580  21530  21320  21476.67  143.18 

B3‐7 days  Average(Psi) Average(MPa) 

Fc (Psi)  21870  21240 21655 21588.33 143.92 

B1‐7 days  Average(Psi) Average(MPa) 

Fc (Psi)  19580  19910 19630 19706.67 131.38 

B3‐7 days  Average(Psi) Average(MPa) 

Fc (Psi)  21060  21260 21120 21146.67 140.98 

 

 

 

 

   Number of 22×6×3 in 

specimens  

(Smaller Size) 

Number of 30×6×6 in 

specimens 

(Larger Size) 

Number of 8×4 

in Cylinders 

Batch 1  4  0 9 

Batch 2  0  3  9 

Batch 3  2  2  9 
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Table  3.4: Test results for the split tension of specimens 

B1‐28 days Average(Psi) Average(MPa) 

Ft (Psi)  1043  1154 1087 1094.67 7.30 

B2‐28 days  Average(Psi) Average(MPa) 

Ft (Psi)  1020  1070  1374  1154.67  7.70 

B3‐28 days  Average(Psi) Average(MPa) 

Ft (Psi)  1134  1297  1050  1160.33  7.74 

 

 

3.2 Test Mix Design for High Performance Concrete 

 

The mix was designed based on the ACI guidelines. Therefore, a mix created 

initially by Dr. Taha, at Civil Engineering Department, University of New Mexico, 

was developed to be used to cast HPC. The mix portion for volume of 1 cubic 

meter is as follows: 

Table  3.5: Typical HPC composition 

Material  

Type I/II Cement (kg) 302 

Fly Ash(kg) 120 

Sam Sanders Fine Aggregate (kg) 1290 

Sam Sanders Intermediate Aggregate (kg) 635 

Water (L) 120 

Glenium 3030 NS (Super plasticizer) (mL) 7650 

Rheomac VMA 362  (mL) 4140 
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3.2.1 Batching, and Curing 

 

The HPC was cast in two different sizes just like UHPC, with only one difference 

that the casting was done in a single batch in a normal mixer unlike UHPC which 

needed shear mixer. 

All the forms for the beams, and cylinders were oiled before beginning of casting. 

All the aggregates, cement, and fly ash were then added in the mixer, and mixed. 

Then half of water, Rheomac, and Glenium were added, and mixed for 2-4 

minutes. Finally, rest of the water was added to the mix to get the desirable mix 

which was also workable, and facilitated the casting. Each specimen was 

compacted according to ASTM standard C192 (ASTM 2006) during the casting. 

When all the forms were filled up with concrete, the exposed surfaces of the 

specimens were screeded to facilitate future preparation of the specimens. The 

specimens were then covered in plastic to avoid any moisture loss, and left 

undisturbed for 24 hours until demolding. The specimens were demolded 

approximately 24 hours after casting, and immediately taken to the curing room. 

After 28 days, compressive strength test, and split tension test according to C873 

(ASTM 2006), and ASTM standard C496 (ASTM 2006) respectively, were 

performed, the average results for three specimens are as below: 

Table  3.6: Compressive test results of the specimens 

28 days  Average(Psi) Average(MPa) 

Fc (Psi)  8264  8434  8185  8294.33  55.30 
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Table  3.7: Tensile test results of the specimens 

28 days Average(Psi) Average(MPa) 

Ft (Psi)  656  720 694 690.00 4.60 

 

 

3.3 ACI Committee 446: Fracture Toughness Testing of Concrete 

 

3.3.1 Summary of Test Method 

 

In this test method, notched beams for two different sized of UHPC and HPC 

were tested to help determine the parameters of various models of concrete 

fracture. Center-loaded notched concrete beams were tested under closed loop 

CMOD control (with compensation for specimen self-weight). The relationship 

between load, load point displacement, LPD, crack mouth opening displacement, 

CMOD, versus time, t were recorded and reported. 

3.3.2 Specimens 

 

ACI committee 446 has determined several provisions that should be met when 

the concrete specimens are cast [37]: 

 “The geometry and manufacture of the specimens in this procedure shall 

conform to the general provisions of Practices C 31 (field specimens) or C 

192 (laboratory specimens) applicable to beam and prism specimens.” 
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 “A minimum of three beam specimens shall be cast. Whenever practical, 

all the specimens shall be cast from the same concrete batch.”   

 “The beam specimens shall be prismatic beams of rectangular cross 

section with a sawn central notch.” 

 “Beam depth, D, shall be at least 6 times greater than the maximum 

aggregate size, da (D  6da). The preferred depth, D, is 150 mm if da ≤ 25 

mm.” 

 “Beam width, B, shall be at least 6 times greater than the maximum 

aggregate size, da (B  6da). The preferred width, B, is 150 mm if da ≤ 25 

mm.” 

 “The loading span (S) shall be equal to three times the beam depth (3D), 

within ±5%.” 

 “The total length (L) of the specimen shall be at least 50 mm longer than 

three times the beam depth (L  3D + 50 mm).” 

 “The nominal notch depth (a0) shall be equal D/3, to within ±10%. 

Deviations up to 10% of the nominal value may be accepted for a whole 

test series (0.30  a0/D  0.37). But, within a series, notch depths of 

individual specimens shall not deviate from the mean by more than 2%.” 

 “The notch width (N) shall be no larger than the 2% of the beam depth (N 

 0.02D).” 
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Table  3.9: Details of two different beam sizes for HPC 

Smaller Size Larger Size

D (mm) 76.2 152.4

B(mm) 152.4  152.4 

N(mm) 3.048  3.048 

a0(mm) 25.4  50.8 

S(mm) 228.6  457.2 

L(mm) 558.8  762 

Total number of 

beam Specimens  6  6 

 

3.3.3 Apparatus 

 

ACI committee 446 considered some provisions for testing machine for beam 

specimens [37] : 

 “A servo-hydraulic or electromechanical testing machine shall be used that 

provides closed-loop control with the crack mouth opening displacement 

(CMOD) as the feedback signal. Sufficiently high machine stiffness is 

required to prevent CMOD snap-back instability.” 

 “The load cell installed on the machine for these specific tests shall give 

load readings accurate to within 1% of the recorded peak load.” 
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ACI Committee 446 has determined the following conditions for loading 

apparatus for beam specimens [37]: 

 “The loading apparatus (Figure  3.10) for the bending tests shall provide 

two supports and a central loading block suitably mounted to minimize 

eccentricities (torsion), to keep the loading span within the specified 

tolerances, and to minimize friction at the supports.” 

 “The loading block (Figure  3.10) shall be cylindrical with a circular 

boundary of a radius 0.1 D  R  0.2 D and a length equal or exceeding 

the specimen width, B. It shall be able to rotate about the longitudinal axis 

up to ±10o to accommodate small specimen imperfections without 

introducing torsion. The loading block shall be suspended from the load 

cell (by means of springs, e.g.) so that the load cell, and not the specimen, 

directly holds the loading block’s weight.” For this purpose the loading 

block was suspended from the load cell using rubber bands as its shown 

in figure below: 
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3.3.4 Compensation of Specimen Self-Weight 

 

ACI Committee 446, unlike the methods recommended by RILEM, has provided 

some provisions for compensation of self-weight to avoid unstable failure before 

the end of the test due to the self-weight of the specimens. 

 “Weight compensation shall be provided using either counterweights at 

each end of the specimen, as sketched in Figure  3.11 and illustrated in 

Figure  3.11, or the counterweights may consist of the projecting ends of 

the concrete beam as sketched in Figure  3.11.” 

 “The beam length, L, or counterweights shall be chosen to ensure a 

hogging bending moment at mid-span, M, such that mgS/32 < M < 

mgS/16.” In this equation m is the beam mass, g is the acceleration due to 

gravity, and S is the span. 

 

Figure  3.11: Weight compensation: (a) double-length specimen; (b) 
attached counter-weights [37] 
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10ሺ12ሻ  4ሺ7.5ሻ െ 3.4 ൈ 15 ൈ 1.5  ܯ ൌ 0 ՜ ܯ ൌ െ73.5 ݈ܾ. ݅݊ ൌ െ8324.7 ܰ.݉݉ 

Thus, 

6447.38< 8324.7< 12894.75     the assumption for P was correct. 

It should be noted that while the above calculation was done for UHPC, it is also 

applicable to HPC, since the weight of the specimen for two different concrete is 

almost the same, and the beam dimension and test setup are identical.  

3.3.5 CMOD and LVDT 

 

ACI Committee 446 has determined the following conditions for the extensometer 

for measuring the CMOD [37]: 

 “The CMOD shall be measured with a clip-on gage or similar 

extensometer (Figure  3.15) giving readings accurate within 5 µm (five 

micron) over a range of 0.0133D.” 

 “The gage length of the extensometer shall be centered on the notch; the 

gage length shall be less than 0.25a0 (Figure  3.15).” 

 “The fastenings of the knife edges to the specimen shall be within 0.25a0 

of the notch center line (Figure  3.15) (If the knife edges are glued to the 

specimen surface, all the glued zone shall be within 0.25a0 of the notch 

center line).” 

 “The distance H0 of the extension line to the specimen surface shall be as 

small as possible, and never greater than 0.1a0 (Figure  3.15).” 
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3.3.6 Beam Specimen Preparation 

 

The beams were taken out of the tank one day before the test, and were notched 

using a diamond saw with water cooling system. The pressure of the saw was 

kept as low as possible to avoid any likely damage to the concrete. Also the 

circular saw caused the notch front to be perpendicular to the planes, which were 

horizontal during the casting. Then, the specimens were handled very carefully to 

avoid any damages.  

The beams were removed again out of the tank with enough caution to avoid any 

damages since they were already notched, and the support lines and center line 

for loading were immediately marked. Meanwhile, the specimen was kept wet by 

using water sprayed on the specimen, so the dry surface was totally avoided 

during the beam preparation. 

It was verified that the load bearing areas are even using a ground steel rod and 

a leaf type feeler gage of 0.2 mm. The gaps larger than 0.2 mm were detected 

and removed by grinding that area. 

The knives were attached to the specimen along the crack using super glue. 
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proposed that, if the machine can be given any specified evolution of CMOD vs. 

time, a good choice could be to use the piecewise function defined as 

 CMOD = w0 t/t0               for t < t0,                                                                       3.1 

 CMOD = w0 exp [(t-t0)/t0], for t > t0                                                           

Where t0 = 3-5 min is the (nominal) time to peak and w0 the (nominal) CMOD at 

the peak.  

By using the above equation, the completion of the test should be achieved in 

approximately 5 times the time to the peak load (i.e. between 15 and 25 minutes, 

which is reasonable). The value for w0 has to be initially guessed and then 

corrected from the results of a trial test, just as for the initial rate.  

Some dummy specimens were tested to obtain a good loading rate which could 

satisfy the above conditions. The MTS procedure editor was used to input the 

loading rate for CMOD control mode. The program divided the loading to different 

time intervals with an assigned value for CMOD at the end of each time interval. 

The dummy tests showed that, since ultra-high performance concrete is very 

brittle, the CMOD increase rate should be very slow to avoid any sudden or 

unstable failure of the specimen, and to be able to get a good softening curve. 

Based on the dummy tests, the values for W0 and the CMOD increase rate were 

reevaluated, and the loading program was finalized. 
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All dimensions were measured to the nearest 0.01 mm, including the beam depth 

(D) at the central cross section at the two surfaces of each half of the specimen, 

the notch depth (a0) at the central cross section at the two surfaces of each half 

of the specimen, and the beam width (B) at the front of the notch and at the top 

of the. Finally the average of the measured values was used to run the analysis. 

3.3.9 Challenges in the Loading Procedure 

 

The loading procedure proposed by ACI Committee 446 has not considered the 

influence of concrete strength on the loading pattern. Therefore, it was 

cumbersome to determine a good loading pattern. Initially, stroke control mode 

was used to investigate the feasibility of obtaining a good softening curve with no 

unstable fracture for the smaller size of HPC. The results for the dummy 

specimens revealed the inapplicability of the stroke control mode. A sudden 

decrease in the load was inevitable in the stroke control which prevents obtaining 

a good softening curve as shown in Figure  3.26. 
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Table  3.12: Summary of post-test measurements for UHPC, smaller size 

  558.8*152.4*76.2 mm 

Specimen 

name  
B3‐S1  B3‐S2  B1‐S1  B1‐S2  B1‐S3  B1‐S4 

Preload(N)  743  610  610  735  753  764 

Weight(KG)  17.2 17.2 17.2 17.05 16.5  16.55 

Dimensions

D1(mm)  75.46 77.09 77.09 78.44 76.49  75.36 

D2(mm)  76.05  77.25  77.25  78.05  75.11  74.51 

D3(mm)  75.56  76.58  76.58  78.54  75.58  74.4 

D4(mm)  76.33  77.19  77.19  78.26  76.32  75.49 

Dave  75.85  77.03  77.028 78.323 75.875  74.94 

B1(mm)  153.5 153.3 153.25 153.62 153.31  153.39 

B2(mm)  153.3  154  153.97 154.29 154.79  154.76 

B3(mm)  154.1  153.3  153.3  154.24 153.05  154.04 

B4(mm)  153.8  153.5  153.47 153.89 153.75  154.77 

Bave  153.6  153.5  153.5  154.01 153.73  154.24 

a1(mm)  23.12 27.26 27.26 27 23.58  23.63 

a2(mm)  27.96  24.66  24.66  31.73  24.31  25.67 

a3(mm)  27.81  27.38  27.38  31.49  24.11  26.94 

a4(mm)  23.67  24.35  24.35  27.43  24.13  23.6 

aave  25.64 25.91 25.913 29.413 24.033  24.96 
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Table  3.13: Summary of post-test measurements for UHPC, larger size 

  762*152.4*152.4 mm 

Specimen 

name   
B3‐S3  B3‐S4  B2‐S1  B2‐S2  B2‐S3 

Preload(N)  1206  1103  1156  1102  1196 

Weight(KG)  46.05 45.8 45.95 45.6 45.8 

Dimensions

D1(mm)  151.31 153.38 154.49 152.82  152.63 

D2(mm)  153.08  151.94  153.28  152.97  152.56 

D3(mm)  151.25  154.29  153.43  153.34  151.88 

D4(mm)  153.52  152.12  155.63  152.65  153.28 

Dave  152.29  152.93  154.11  152.95  152.59 

B1(mm)  153.25 150.66 151.03 153.13  153.1 

B2(mm)  153.01  151.4  151.2  153.52  153.21 

B3(mm)  152.58  151.04  152.01  153.56  153.08 

B4(mm)  152.97  151.42  151.2  153.15  153.36 

Bave  152.95  151.13  151.36  153.34  153.19 

a1(mm)  49.3 56.57 49.7 50.03 48.22 

a2(mm)  55.9  56.17  48.93  48.97  49.48 

a3(mm)  51.87  55.53  49  48.62  47.88 

a4(mm)  57.61  56.37  49.33  48.9  49 

aave  53.67 56.16 49.24 49.13 48.65 
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Table  3.14: Summary of post-test measurements for HPC, smaller size 

  558.8*152.4*76.2 mm 

Specimen Name S1  S2  S3 

Preload(N)  365  534  447 

Weight(KG) 15.9 15.15 15.8 

Dimensions 

D1(mm)  79.69  75.2  78.81 

D2(mm)  81.57  76.73  78.64 

D3(mm)  83.03  75.5  78.54 

D4(mm)  81.53 75.25 78.65 

Dave  81.455  75.67  78.66 

B1(mm)  154.53  156.25  155.61 

B2(mm)  154.84  154.96  154.69 

B3(mm)  154.42 155.94 155.61 

B4(mm)  155.41  154.88  155.3 

Bave  154.8  155.5075 155.3025 

a1(mm)  26.39  26.49  26.07 

a2(mm)  25.3  26.63  26.12 

a3(mm)  26.42 26.36 26.08 

a4(mm)  25.13  27.88  25.29 

aave  25.81  26.84  25.89 
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Table  3.15: Summary of post-test measurements for HPC, larger size 

  762*152.4*152.4 mm 

Specimen 

Name 
S1  S2  S3  S4  S5  S6 

Preload(N)  679  733  729  828  631  861 

Weight(KG)  42.65  42 41.6 42.1 41.7  41.2

Dimensions 

D1(mm)  151.71  153.3  153.37  153.48  151.73  152.53 

D2(mm)  151.18  153.59  154.84  153.13  154.33  151.64 

D3(mm)  150.2  153.21  153.82  154.02  154.89  151.67 

D4(mm)  151.42  153.83 153.43 153.5 152.73  152.62

Dave  151.1275  153.4825 153.865 153.5325 153.42  152.115

B1(mm)  154.88  152.12  154.4  157.43  152.49  152.18 

B2(mm)  158.34  155.26  156.84  161.06  152.74  150.57 

B3(mm)  154.84  153.75  157.21  155.91  153.11  152.98 

B4(mm)  158.63  156.39 153.31 159.04 153.21  151.09

Bave  156.6725  154.38  155.44  158.36  152.8875  151.705

a1(mm)  47.81  51.98  51.28  49.67  45.38  48.42 

a2(mm)  50.7  54.11  50.47  50.67  51.8  53.72 

a3(mm)  49.69  54.19  50.16  50.19  51.56  52.46 

a4(mm)  48.18  52.92 49.89 50.65 46.96  48.36

aave  49.095  53.3  50.45  50.295  48.925  50.74 
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CHAPTER 4 

4 EXPERIMENTAL RESULTS AND DISCUSSION  

 

4.1 Test Results Using ACI Committee 446 Equations 

 

ACI Committee 446 equations will be used to obtain the fracture parameters for 

two different sizes for both UHPC and HPC [37]. The basic concepts behind 

these equations were already discussed in the literature review. 

 

4.1.1 Modulus of Elasticity 

 

In the first step, the initial compliance Ci was evaluated by fitting a straight line to 

the segment of load-CMOD curve with measured loads between 15% and 55% 

of the peak load. 

 
'P

CMOD
Ci 




                                                                                                     4.1 

 

Ci = initial compliance, µm N-1. 

∆ (CMOD) = variation of CMOD, µm. 

∆P’ = variation of measured load, N. 

 

Later, this initial compliance is used to calculate the Young’s Modulus of each 

specimen as follows: 
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E 

6Sa
0
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i
BD2

V
1
( '

0
)  

Where,  '0 
a0  h

D  h                                                                                               4.2 

 

Where, E is elastic modulus( GPa), Ci is initial compliance( µm N-1), B is beam 

thickness (mm), D is beam depth (mm.), a0 is notch length( mm), h is Distance of 

the knife edges to specimen surface(mm). 

And, 

V1() 0.8 1.7  2.4 2 
0.66

(1)2 
4D

S
(0.04  0.58 1.47 2  2.04 3)

               4.3 

 

4.1.2 Far Tail Constant, A 

 

P’R, the residual load is determined from the last data recorded by load cell, and 

the corresponding CMOD is denoted as WMR. Then, the load was corrected using 

equation below: 

 P1 = P’ – P’R                                                                                                                                                           4.4 

 

The curve for corrected peak load, P1 versus CMOD was plotted, and then WMA, 

the intersection of the rising part of the curve with the CMOD axis was 

determined. For the points in the record past the peak for which the corrected 
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load is less than or equal to 5% of the corrected peak load, the quantity X was 

calculated as follows: 

X 
4D

S









2
1

wM  wMA 2 
1

wMR  wMA 2











                                                                4.5 

 

Where 

WM = recorded CMOD, mm.  

WMR = CMOD at the end of test, mm. 

WMA = CMOD at zero P1 for the rising part of curve, mm. 

 

After the values for X are calculated, the curve of P1 versus X is plotted, and the 

least square method was used to fit a quadratic equation to the curve. 

P1 = X (A+KX)                                                                                                     4.6 

 

 Constant, A will be evaluated in N-mm2 with three significant digits (K is not 

needed). 
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Table  4.1: Summary of results for the smaller size of UHPC 

Specimen 

Name 
B1‐S2  B1‐S3  B1‐S4  Average 

Standard 

Deviation 

E (MPa)  58574.468  49367.287 57021.162 54987.64  4928.94 

Fp (MPa)  3.665  3.689 3.257 3.54 0.24 

A (N‐mm2)  15.219  18.393  6.870  13.49  5.95 

 

 

Table  4.2: Summary of results for the larger size of UHPC 

Specimen 

Name 
B2‐S1  B2‐S2  B3‐S3  Average 

Standard 

Deviation 

E (MPa)  52175.173  49777.511 45610.522 49187.74  3321.83

Fp (MPa)  2.271  2.039  2.178  2.16  0.12 

A (N‐mm2)  40.816  14.810  33.979  29.87  13.48 

 

 

Table  4.3: Summary of results for the smaller size of HPC 

Specimen 

Name 
S2  S3  S4  Average 

Standard 

Deviation 

E (MPa)  42734.88 43893.64  40802.32 42476.95 1561.72 

Fp (MPa)  2.24  2.20  1.97  2.14  0.15 

A (N‐mm2)  26.990  28.44 16.968 24.13 6.25 
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Table  4.4: Summary of results for the larger size of HPC 

Specimen 

Name 
S2  S3  S6  Average 

Standard 

Deviation 

E (MPa)  43894.36  37199.44  42199.99  41097.93  3480.86 

Fp (MPa)  1.97  1.78  2.12  1.96  0.17 

A (N‐mm2)  86.213  55.331  56.630  66.06  17.47 

 

4.1.4 Brittleness Length, l1, and Horizontal Intercept, w1 

 

ACI Committee 446 has proposed the following equations to calculate the 

brittleness length and horizontal intercept: 

  















2221

365.2

1

2.11

xx
Dl 

                                                                                  4.9 

κ = 1 - α0
1.7 

α0= a0/D = notch-to-depth ratio. 

D = beam depth, mm. 

a0 = notch length, mm. 

x = ft/fp = inverse relative plastic strength. 

fp = net plastic flexural strength, MPa. 

ft = tensile strength, MPa. 

Then, 

w1 1000
2 f t

E
l1
                                                                                                     4.10 
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The summary of results from the above equations is shown in the tables below: 

Table  4.5: Summary of results for the smaller size of UHPC 

Specimen 

Name 
B1‐S2  B1‐S3  B1‐S4  Average

Standard 

Deviation 

l1 (mm)  88.23  142.2  69.4  99.94  37.79 

W1 (µm)  18.76 27.77 12.54 19.69 7.66 

 

Table  4.6: Summary of results for the larger size of UHPC 

Specimen 

Name 
B2‐S1  B2‐S2  B3‐S3  Average

Standard 

Deviation 

l1 (mm)  46.88  34.73  41.66  41.09  6.09 

W1 (µm)  13.12  10.19  13.33  12.21  1.76 

 

Table  4.7: Summary of results for the smaller size of HPC 

Specimen 

Name 
S1  S2  S3  Average

Standard 

Deviation 

l1 (mm)  109.14  101.43  65.93  92.17  23.05 

W1 (µm)  17.39  19.50  14.87  17.25  2.32 
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Table  4.8: Summary of results for the smaller size of HPC 

Specimen 

Name 
S2  S3  S6  Average 

Standard 

Deviation 

l1 (mm)  129.94  91.69  168.65  130.09  38.48 

W1 (µm)  27.24  22.68  36.77  28.89  7.19 

 

4.1.5 Fracture Energy, GF 

 

For each specimen, the curve of corrected load, P1 versus load-point 

displacement, δ was plotted. Then the value for δ A, the intersection of the rising 

part of the curve with the δ axis is determined (Figure  4.7). 

For each specimen, the load-point displacement δR of the last point of the test 

record was determined.  

Then, for each specimen, the measured work of fracture WFm as the area 

enclosed between the positive part of the P1 vs. δ curve and the δ axis is 

calculated (Figure  4.7). 

AR
FmF

A
WW

 


2

                                                                                           4.11
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Table  4.9: Fracture energy and stress intensity factor for the smaller size of 
UHPC 

Specimen 

Name 
B1‐S2  B1‐S3  B1‐S4  Average

Standard 

Deviation 

GF(N/m)  92.57  94.81  65.17  84.19  16.51 

KIC(MPa m0.5)  2.33  2.16 1.93 2.14 0.20 

 

Table  4.10: Fracture energy and stress intensity factor for the larger size of 
UHPC 

Specimen 

Name 
B2‐S1  B2‐S2  B3‐S3  Average

Standard 

Deviation 

GF(N/m)  97.12  60.72  85.00  80.95  18.53 

KIC(MPa m0.5)  2.25  1.74  1.97  1.99  0.26 

 

Table  4.11: Fracture energy and stress intensity factor for the smaller size 
of HPC 

Specimen 

Name 
S1  S2  S3  Average

Standard 

Deviation 

GF(N/m)  91.18  97.63  81.38  90.06  8.18 

KIC(MPa m0.5)  1.97  2.07  1.82  1.96  0.12 

 

Table  4.12: Fracture energy and stress intensity factor for the larger size of 
HPC 

Specimen 

Name 
S2  S3  S6  Average

Standard 

Deviation 

GF(N/m)  111.65  84.69  90.22  95.52  14.24 

KIC(MPa m0.5)  2.21  1.77  1.95  1.98  0.22 
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4.1.6 Center of Gravity of the Softening Curve, wG 

 

For each specimen, the abscissa of the center of gravity of the area under the 

softening curve is calculated as below: 

610
4


F

G BSG

A
w

                                                                                                  4.14 

 

wG = center of gravity of the area under the softening curve, µm (microns). 

A = far tail constant in N mm2. 

B = beam thickness, mm. 

S = loading span, mm. 

GF = fracture energy of the specimen, N/m. 

 

 

Table  4.13: wG for the smaller size of UHPC 

Specimen 

Name 
B1‐S2  B1‐S3  B1‐S4  Average Standard Deviation 

WG(µm)  18.68  22.08  11.96  17.57  5.15 

 

 

Table  4.14: wG for the larger size of UHPC 

Specimen 

Name 
B2‐S1  B2‐S2  B3‐S3  Average Standard Deviation 

WG(µm)  24.02  13.94  22.84  20.27  5.51 
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Table  4.15: wG for the smaller size of HPC 

Specimen 

Name 
S1  S2  S3  Average Standard Deviation 

WG(µm)  33.48  36.49  23.52  31.16  6.79 

 

 

Table  4.16: wG for the larger size of HPC 

Specimen 

Name 
S2  S3  S6  Average

Standard 

Deviation 

WG(µm)  43.76  36.78 36.49 39.01 4.12 

 

4.1.7 Bilinear Approximation of the Softening Curve 

 

The mean values for l1, w1, GF, and wG are determined for three specimens for 

two different sizes. Then wch can be calculated as below: 

t

Fm
ch f

G
w 

                                                                                                        4.15 

wch = characteristic crack opening, µm (microns). 

GFm = mean fracture energy, N/m. 

ft= tensile strength, MPa. 

 

Eventually, the critical crack opening of the bilinear approximation is evaluated as 

below: 
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                              4.16

 

Where 

wc =critical crack opening, µm (microns). 

wch = characteristic crack opening, µm (microns). 

wGm =mean center of gravity of the area under the stress versus crack opening 
curve, µm (microns). 

w1m = mean horizontal intercept, µm (microns). 

 

Also, the stress, and crack opening at the kink point can be calculated, so: 

  


k
 f

t

2w
ch
 w

1m

w
c
 w

1m                                                                                                4.17 

  
w

k
 w

1m

w
c
 2w

ch

w
c
 w

1m                                                                                               4.18
 

Where, 

σk = stress at the kink point, MPa. 

ft = tensile strength, MPa. 

wch = characteristic crack opening, µm (microns). 

w1m = mean horizontal intercept, µm (microns). 

wc =critical crack opening, µm (microns). 

wk = crack opening at the kink point, µm (microns). 

wc =critical crack opening, µm (microns). 
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The results for parameters needed to plot bilinear softening curve are shown 

below: 

Table  4.17: Bilinear softening curve parameters for HPC 

  Smaller Size   Larger Size 

wch(µm)  19.58 20.77

wc(µm)  122.59  262.26 

σk(MPa)  0.96  0.25 

wk(µm)  13.66  27.33 

 

 

Table  4.18: Bilinear softening curve parameters for UHPC 

  Smaller Size Larger Size

wch(µm) 11.53 10.49

wc(µm)  172.75  105.27 

σk(MPa)  0.19  0.73 

wk(µm)  18.50  11.06 

 

 

Now, the bilinear softening curve can be plotted for each size of HPC and UHPC 

as below: 
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4.2 Summary of Results 

 

The summary of all the parameters calculated earlier is tabulated below: 

 

Table  4.19: Summary of results for the smaller size of UHPC 

Specimen name  B1‐S2  B1‐S3  B1‐S4  Average 
Standard 

Deviation

Peak Load (N)  12180.8  13543.3  12006.2  12576.8  841.63 

Wo‐CMOD at peak 

load (mm) 
0.02376  0.01905  0.01981  0.02087  0.00253 

Time for peak load 

(min) 
4.85  4.00  4.28  4.38  0.43 

Pr‐ Residual load(N)  1056.54  769.22  1427.29  1084.35  329.92 

Time at end of test 

(min) 
29.08  29.08  28.11  28.76  0.56 

WMR‐CMOD at end 

of test(mm) 
0.15029  0.18187  0.13259  0.15492  0.02497 

E (MPa)  58574.4 49367.2 57021.1 54987.64  4928.94

Fp (MPa)  3.66  3.69  3.26  3.54  0.24 

A (N‐mm2)  15.219  18.393  6.870  13.494  5.952 

GF (N/m)  92.57  94.81  65.17  84.19  16.51 

KIC(MPa m0.5)  2.33  2.16  1.93  2.14  0.20 

l1 (mm)  118.59  125.18  73.71  105.83  28.01 

W1 (µm)  29.56  37.02  18.87  28.48  9.12 

WG(µm)  18.68  22.08  11.96  17.57  5.15 
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Table  4.20: Summary of results for the larger size of UHPC 

Specimen name  B2‐S1  B2‐S2  B3‐S3  Average 
Standard 

Deviation

Peak Load (N) 16620.30 16155.61 16768.77 16514.89  319.89

Wo‐CMOD at peak 

load (mm) 
0.03242  0.02725  0.02950  0.02972  0.00259 

Time for peak load 

(min) 
4.02  3.33  3.49  3.61  0.36 

Pr‐ Residual load(N)  1259.13  2070.60  2415.68  1915.14  593.74 

Time at end of test 

(min) 
27.02  20.16  21.73  22.97  3.59 

WMR‐CMOD at end 

of test(mm) 
0.19969  0.15448  0.16048  0.17155  0.02456 

E (MPa)  52175.17 49777.51  45610.52  49187.74  3321.83 

Fp (MPa)  2.27 2.04 2.18 2.16  0.12

A (N‐mm2)  40.816  14.810  33.979  29.868  13.481 

GF (N/m)  97.12  60.72  85.00  80.95  18.53 

KIC(MPa m0.5)  2.25  1.74  1.97  1.99  0.26 

l1 (mm)  46.88  34.73  41.66  41.09  6.09 

W1 (µm)  13.12  10.19  13.33  12.21  1.76 

WG(µm)  24.02  13.94  22.84  20.27  5.51 
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Table  4.21: Summary of results for the smaller size of HPC 

Specimen name  S1  S2  S3  Average 
Standard 

Deviation

Peak Load (N) 8102.34 8321.47 8020.01 8174.27  200.17

Wo‐CMOD at peak 

load (mm) 
0.0234  0.033838  0.01842  0.02122  0.00255 

Time for peak 

load (min) 
4.88  3.24  3.81  4.44  0.56 

Pr‐ Residual 

load(N) 
362.55  1190.75  1984.91  962.07  890.17 

Time at end of 

test (min) 
22.67  20.53  17.21  21.47  3.81 

WMR‐CMOD at 

end of test(mm) 
0.2319086  0.2746  0.11526  0.19698  0.07103 

E (MPa)  42734.88  43893.64  40802.32  42476.95  1561.72 

Fp (MPa)  2.24  2.20  1.97  2.14  0.15 

A (N‐mm2)  26.990  28.440  16.968  24.133  6.247 

GF (N/m)  91.18  97.63  81.38  90.06  8.18 

KIC(MPa m0.5)  1.97  2.07  1.82  1.96  0.12 

l1 (mm)  72.39  101.43  65.93  79.92  18.91 

W1 (µm)  18.04  19.50  14.87  17.47  2.37 

WG(µm)  34.53  36.49  23.52  31.51  6.99 
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Table  4.22: Summary of results for the larger size of HPC 

Specimen name  S2  S3  S6  Average 
Standard 

Deviation

Peak Load (N) 13002.58 13197.85 14141.6 13447.3  609.12

Wo‐CMOD at peak 

load (mm) 
0.03458  0.03150  0.03058  0.03222  0.00209 

Time for peak load 

(min) 
4.86  3.75  3.58  4.06  0.70 

Pr‐ Residual load(N)  184.14  1036.50  355.85  525.50  450.79 

Time at end of test 

(min) 
23.58  21.20  22.77  22.52  1.21 

WMR‐CMOD at end of 

test(mm) 
0.38239  0.27284  0.34105  0.33210  0.0553 

E (MPa)  43894.3  37199.4  42199.9  41097.9  3480.8 

Fp (MPa)  1.97  1.78  2.12  1.96  0.17 

A (N‐mm2)  86.213  55.331  56.630  66.058  17.467 

GF (N/m)  111.65  84.69  90.22  95.52  14.24 

KIC(MPa m0.5)  2.21  1.77  1.95  1.98  0.22 

l1 (mm)  129.94  91.69  168.65  130.09  38.48 

W1 (µm)  27.24  22.68  36.77  28.89  7.19 

WG(µm)  43.76  36.78  36.49  39.01  4.12 
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4.3.2 Critical Crack Opening Displacement 

 

The table below summarizes the values of the critical crack opening 

displacement for two different sizes of UHPC, and HPC. It also demonstrates 

how much these values differ from each other. It is observed that the values of 

the critical crack opening displacement were different for the two different sizes 

of beams. 

 

Table  4.23: Comparison of critical crack opening displacement of two 
different sizes for HPC, and UHPC 

  
HPC  UHPC 

Smaller Size  Larger Size  Difference (%)  Smaller Size  Larger Size  Difference (%) 

CODc(µm)  122.59  262.26 ‐113.9 172.75 105.27  39.1

 

4.3.3 Fracture Energy and Critical Stress Intensity Factor 

 

The scatter in the data for fracture energy, GF and critical stress intensity factor, 

KIC versus compressive strength of concrete for two sizes for both UHPC, and 

HPC is sketched in Figure  4.27. It is observed that the fracture energy decreases 

significantly as the compressive strength increases for the larger size, while the 

loss in the fracture energy due to increase in compressive strength is insignificant 

and negligible for the smaller size. CEB –FIP 90 has predicted a different trend in 

fracture energy for concrete with the compressive strength ranging from 12 to 80 
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MPa; it was shown that for different maximum size of aggregates, the fracture 

energy increases as the compressive strength increases [30]. 

Furthermore, for a specific strength of concrete, the two sizes demonstrate 

almost the same value for fracture energy, demonstrating size independency, 

which was expected according to the test method proposed by ACI Committee 

446. 

 

Table  4.24: Comparison of fracture energy of two different sizes for HPC, 
and UHPC 

  
HPC  UHPC 

Smaller Size  Larger Size  Difference (%)  Smaller Size  Larger Size  Difference (%) 

GF (N/m)  90.06  95.52 ‐6 84.19 80.95  4 

 

Table  4.25: Comparison of fracture energy for UHPC and HPC for two 
different sizes  

   Smaller Size  Larger Size 

HPC   UHPC  Difference (%)  HPC   UHPC  Difference (%) 

GF (N/m)  90.06  84.19 6.5 95.52 80.95  15.3 

 

However, for critical stress intensity factor, a different trend is observed. The 

increase in values for KIC is not significant as the compressive strength increases 

for two different sizes. Hence, the changes in fracture toughness for two different 

strengths are negligible.  
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Moreover, if the strength of concrete is held constant, the increase in size of the 

beam does not vary the values of fracture toughness either HPC or UHPC. Thus, 

no size effect exists in determining the value of fracture toughness.  

 

Table  4.26: Comparison of critical stress intensity factor of two different 
sizes for HPC, and UHPC 

  HPC  UHPC 

Smaller Size  Larger Size Difference (%) Smaller Size Larger Size  Difference (%)

KIC(MPa m0.5)  1.96  1.98 ‐1.26 2.14 1.99  7.18

 

Table  4.27: Comparison of critical stress intensity factor for UHPC and HPC 
for two different sizes 

   Smaller Size  Larger Size 

HPC   UHPC Difference (%)  HPC   UHPC  Difference (%)

 KIC(MPa m0.5)  1.96  2.14  ‐9.1  1.98  1.99  ‐0.5 
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CHAPTER 5 

5 CONCLUSIONS  

 

5.1 Conclusions 
 

Study of the fracture parameters of ultra-high performance concrete (UHPC), and 

high performance concrete (HPC) based on the test method proposed by ACI 

Committee 446, has led to several conclusions: 

 

 UHPC with no fibers and HPC don’t generally exhibit high fracture 

toughness compared to normal strength concrete due to their intrinsic 

brittleness, in spite of high compressive strength.  

 Values of fracture energy GF, and fracture toughness KIC for two different 

sizes are very close, which indicate that the property was size 

independent for two different sizes, as per the method proposed by ACI 

committee 446.  

 For the smaller size of beams (size1), increase in compressive strength 

led to a negligible decrease in fracture energy. However, the fracture 

energy decreased significantly for the larger beams. 

 HPC exhibits more ductile behavior than UHPC for the bigger size, 

whereas UHPC indicates more ductile behavior than HPC for the smaller 
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size. The extension of the tail end of the softening curve is an indication of 

ductile fracture behavior. 

 ACI Committee 446 test method was successfully applied to determine the 

fracture parameters of two types of high and ultra-high strength concrete. 

However, some difficulties still exist in determining a proper loading 

pattern for CMOD increase rate to get a good softening curve for highly 

brittle materials such as UHPC, which warrants a thorough revision of ACI 

Committee 446 loading pattern. 
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